EDITORS

Michael T. Kezirian, Ph.D.
The Boeing Company
University of Southern California
Editor-in-Chief

Tommaso Sgobba
European Space Agency (ret.)
Senior Editor

Joseph Pelton, Ph.D.
George Washington University (ret.)
Senior Editor

EDITORY BOARD

George W. S. Abbey
National Aeronautics and Space Administration (ret.)

Sayavur Baktihiyrov, Ph.D.
University of New Mexico

Kenneth Cameron
Science Applications International Corporation

Luigi De Luca, Ph.D.
Politecnico di Milano

Joe H. Engle
Maj Gen. USAF (ret.)
National Aeronautics and Space Administration

Herve Gillingbert
Airbus Space & Defense

Jeffrey A. Hoffman, Ph.D.
Massachusetts Institute of Technology

Ernst Messerschmid, Ph.D.
University of Stuttgart (ret.)

Isabelle Rongier
Airbus Safran Launchers

Kai-Uwe Schrogl, Ph.D.
European Space Agency

Zhumbek Zhantayev
National Center of Space Researches and Technologies (NCSRT)- Kazakhstan

FIELD EDITORS

William Allor, Ph.D.
The Aerospace Corporation

Christophe Bonnal
Centre National d’Etudes Spatiales

Jonathan B. Clark, M.D., M.P.H
Baylor College of Medicine

Victor Chang
Canadian Space Agency

Paul J. Coleman, Jr., Ph.D.
University of California at Los Angeles (Emeritus)

Natalie Costedoat
Centre National d’Etudes Spatiales

Gary Johnson
Science Application International Corporation

Barbara Kanki
National Aeronautics and Space Administration (ret.)

Bruno Lazare
Centre National d’Etudes Spatiales

Carine Leveaux
Centre National d’Etudes Spatiales

Tobias Liska
Hypersonic Technology Goettingen

Michael Lutomski
Space Exploration Technologies

Erwin Mooij, Ph.D.
Delft University of Technology

John D. Olivas, PhD, PE
University of Texas El Paso

Nobuo Takeuchi
Japan Aerospace Exploration Agency

Brian Weeden
Secure World Foundation

Paul D. Wilde, Ph.D., P.E.
Federal Aviation Administration

Uwe Wirt
German Aerospace Center (DLR)

MANAGING EDITOR

Arif Gökçü Karacaloğlu,
International Space University

AIMS and SCOPE

The Journal of Space Safety Engineering (JSSE) provides an authoritative source of information in the field of space safety design, research and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote and coordinate the science, technology and practice of space safety. JSSE seeks to establish channels of communication between industry, academy and government in the field of space safety and sustainability.

MAIN JSSE TOPICS

- Safety by design
- Safety on long duration missions
- Launch and re-entry safety
- Space hazards (debris, NEO objects)
- Space weather and radiation
- Environmental impacts
- Nuclear safety for space systems
- Human factors and performance
- Safety critical software design
- Safety risk assessment
- Safety risk management
- Organizational culture and safety
- Regulations and standards for safety
- Space-based safety critical systems
- Space Situational Awareness
- Space traffic control
- Space traffic and air traffic interfaces
- Space materials safety
- Safe & Rescue
- Safety lessons learned

Publication information: The Journal of Space Safety Engineering (ISSN Pending) is a quarterly publication of the International Association for the Advancement of Space Safety (IAASS). You can read about IAASS mission, goals, organization, membership and activities at: http://iaass.space-safety.org/. The JSSE is published using an open access publication model, meaning that all interested readers are able to freely access the journal online without the need for a subscription, and authors are not charged.

Authors inquiries: For inquiries relating to the submission of articles please contact the Editor-in-Chief at: jssepub@gmail.com. For all information about the use of this web page visit the journal web page http://iaass.space-safety.org/publications/journal/. Authors instructions on preparation and submission at: http://iaass.space-safety.org/wp-content/uploads/sites/24/2013/07/JSSE-authors_instructions.pdf.

Advertising information: if you are interested in advertising or other commercial opportunities please e-mail iaass.secretariat@gmail.com and your inquiry will be passed to the correct person who will respond to you within 48 hours.

Copyright and photocopying: Authors retain the copyright of their work. The IAASS maintains the copyright of the Journal as a whole. Single photocopies or electronic scans of single articles may be made for personal use as allowed by national copyright laws. Authors or IAASS permission and the payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising purposes, resale, and all forms of document delivery. For information on how to seek permission please contact the Editor-in-Chief at jsepub@gmail.com.

Notice: No responsibility is assumed by the Publisher IAASS and by Editors and Editorial Board for any injury and/or damage to persons or property from any use or operation of any methods, products, instructions or ideas contained in the journal. Although all advertising material is expected to conform to ethical professional conduct of IAASS, inclusion in this publication does not represent an endorsement of the quality or value of such product or service.

Credits: Kristen Mason, IAASS graphic designer, for graphic work, layout and pagination. Cover picture: Drem Chaser, Sierra Nevada Corporation/ NASA KSC

International Association for the Advancement of Space Safety
Thank you, Mr. [Mark] Glissman for your very kind introduction. It’s a pleasure to be here. I also want to thank IAASS President Isabelle Rongier for guiding this organization in all the good work it does.

You know, since I’ve become NASA Administrator, there has been an incredible expansion of our capabilities, and our vision. When I started, commercial space was a concrete program, but its future was still a foggy notion. I don’t think anyone would have predicted 7 years ago that today we’d not only have two fully functional commercial resupply partners, but that they would already be critical components in our ISS supply chain.

It’s also important to note that both of them have recovered from mishaps, which is the true test of their mettle and ability to learn from mistakes, correct them and get better. Nor would we have guessed that a third commercial cargo partner would have been added for the second phase of the program to resupply an International Space Station that we’ve now committed to through at least 2024.

In commercial crew, it also was not a foregone conclusion that we would be successful, but now The Boeing Company and SpaceX are well into the development of their crew transportation systems, we’ve let contracts for those services, astronauts are training for the first test flights and next year, NEXT year, is our targeted first launch of each of these vehicles. Dragon and Starliner are the new names that will go down in history along with the Space Shuttle – and Orion! – as the carriers of humanity’s aspirations.

Wow! And commercial space is just one piece of our comprehensive and collaborative journey to Mars.

Many people may not think of commercial space vehicles and capability as part of the journey to Mars, but it most definitely is. Without this, NASA couldn’t begin to look at the farther horizons with the Space Launch System rocket and the Orion spacecraft. Without this, we couldn’t have seeded a whole new segment of the economy, giving industry the chance to use its own hard work and innovation to create jobs and new markets for their capabilities and growing the ways the next generation could become excited and inspired by the many facets of exploration. From business to science to engineering and design, there’s a reflection of your passions in our modern space program.

All that said, today we’re focused on a very necessary topic.

The launches and the waving astronauts on TV; the incredible homecoming after a one-year mission; the prospect of humans finally traveling to Mars – none of that can happen without a strong safety presence.

I’ve said from day one that our commercial space transportation systems will fly only when they meet NASA’s stringent safety requirements. Some fault NASA for being slow in its development programs, but a lot of that is because of our early and often focus on the safety factor. While commercial companies have moved rapidly to develop their systems, it has also been with careful insight by NASA – insuring they meet important safety milestones and conduct testing and more testing.

We’ve progressed at the rate at which funding allowed. We aren’t going to rush the development of our commercial cargo and crew vehicles no matter how much people want it.

We really need our own U.S. crew transport capability because we should not be totally dependent on our Russian partners and we should not have to continue paying an increasingly high rate for seats aboard the Soyuz. But I want to be very clear, once again, we won’t fly until we’re convinced the new commercial transportation systems meet our safety requirements.

Our teams are working hard to ensure the safety standards for our Commercial Crew Program are consistent with our Exploration Program’s safety standards and where there are necessary differences we understand and acknowledge those differences (e.g. Deep space long duration vs. LEO short duration safety criteria).

We have 50 years of history launching humans to space, and there’s an incredible knowledge base in there. Believe me, our commercial partners are making use of it.
We’ve always been about lessons learned – both good and bad.

In our history, every mishap, whether involving crew or not, has always made us stronger, more resilient and with one more dataset to help us be safer in the future.

I’ve lost friends and colleagues in space accidents. I don’t want anyone else to have to go through that. The bottom line is that space travel is extremely difficult and risky. It always has been and always will be and there’s no way to make it risk free any more than getting into your car and driving down the highway is ever going to be 100% safe. But that doesn’t mean that we don’t try our hardest to continually minimize risk; that we don’t check and re-check and that we don’t encourage everyone to speak up when they don’t think it’s safe to proceed. I’ve worked hard in my tenure to develop a culture of safety at NASA where dissenting voices are heard and considered. It’s not a catch all, but it’s another check and balance and in our business, that’s essential.

So, our partners have begun tests of their launch abort systems. The rockets on which their spacecraft will fly also are being tested. The list of things to overcome to make commercial crew a reality is extensive, as you can imagine, but I am confident in our partners’ abilities and their commitment to safety is just as strong as ours is.

Because the market in low Earth orbit is going to be deeper and broader than just NASA, there’s going to be an increasing need for cargo, and yes, for human transportation in the coming years. So all of us are working to get it right here on the ground floor. NASA’s horizon mission may be Mars, but that doesn’t mean at all that we’re taking our eyes off of LEO and the work of our commercial partners.

As I mentioned, the work of our commercial partners is essential to getting to Mars.

Our stepping stone approach involves getting the most out of the International Space Station (ISS), where we’re learning to live and work in space for the long term, making breakthroughs in human health and demonstrating technologies for traveling farther. From there, we’ll shake out some of the cutting edge new technologies such as solar electric propulsion in the proving ground of the regions around our moon (cis-lunar) and out in deep space. This will phase will involve missions using Orion and the SLS to cis-lunar space and to an asteroid and then we get to the Earth independent phase when we finally make the decision to move our missions out to the Martian region and to its surface. That’s going to be a huge international undertaking where everything we need we’ll either have to take, make enroute or send on ahead. From Mars, Earth will no longer be a matter of hours or days away and many challenges will have to be solved by our technology and our human ingenuity millions of miles and months away from home base.

It’s daunting, but exciting! The journey to Mars is the biggest thing humanity has ever undertaken and it’s thrilling to think that somebody in my granddaughters’ generation, maybe even one of them, will be the first humans at Mars.

So that stepping stone approach builds on our capabilities and expands the uses of each milestone as we go and our culture of safety must always be present in every phase of this journey.

I mentioned our international partners and it will be critically important that they’re equally as concerned about safety as we are. Our astronauts in space are our most precious resource up there. They represent our brightest, most talented individuals and they’re selected in a highly competitive process. At NASA, for instance, we received 18,300 applications for our last call for astronauts this past February.

We’ll make the selection of the Class of 2017 next year, but the previous Class of 2013 astronauts numbered 8, selected from some 6,800 applications, so you get an idea of the level to which these folks are scrutinized for their skills, talents, passion and dedication. By the way, Class 2013 was the most diverse group we have ever selected for anything with 4 women and 4 men.

Your organization awarded us the IAASS Safety-by-Design-Award in 2013 for the International Space Station as one of the safest and most successful space programs in history and we’re very proud of that. Because it took a lot of work and consensus building and it acknowledged that whatever we do, if nothing else, we operate with a strong safety consciousness out of an abundance of caution.

There have been a lot of space-related movies lately, from Gravity to The Martian that depict astronauts in danger.

But beyond the science fiction -- and we often work with producers to help make their stories as accurate as possible -- the common thread is that there were multiple systems in all these scenarios for astronauts to ensure their safety, even if sometimes they had to jury-rig them. That is a fact!

At the end of the day, our men and women in space are going to have to rely on their wits and training, but we can give them the benefit of the very best technology, the
most thorough testing and the strongest chances for safe missions.

A lot of experts at this gathering are going to give you much more detailed insight on the broadest picture of safety in space, from orbital debris mitigation, to getting into and returning from space and to living on other planetary bodies. What I want to emphasize, though, is that I believe our future is very bright. We will continue to push the envelope because we have to.

More and more partners, both in industry and with other nations are going to require new ways of thinking and our journey to Mars is the biggest thing humanity has undertaken. The hard won knowledge of the past is going to have to be applied to new systems and new missions that were not even conceived when first we began this long journey to space.

It’s a journey that really has no end, so we will continue to be teachable. To move forward in a sustainable manner even as political winds come and go and budgets sustain or change, what is inalterable is our desire to explore. The sacrifices of the men and women who have come before will never be forgotten and the practical, day to day challenges of making space as safe as possible, will never be overlooked. The passion and commitment that you in IAASS bring for establishing and maintaining a strong safety mindset and culture of safety must remain strong. At NASA and among our industry and international partners, we must follow the example you set in each and every one of our programs whether they involve humans or robotic systems.

It will be essential that we all serve as safety officers in our individual work sites and our leadership must be committed to promoting safety as every level of effort. This we must and will do – I promise you that.

Thanks so much for allowing me to join your forum this morning and God Speed!

Thank you.

PROFILE

Nominated by President Barack Obama and confirmed by the U.S. Senate, retired Marine Corps Major General Charles Frank Bolden, Jr., began his duties as the twelfth Administrator of the National Aeronautics and Space Administration on July 17, 2009. As Administrator, he leads the NASA team and manages its resources to advance the agency’s missions and goals.

Bolden’s confirmation marks the beginning of his second stint with the nation’s space agency. His 34-year career with the Marine Corps included 14 years as a member of NASA’s Astronaut Office. After joining the office in 1980, he traveled to orbit four times aboard the space shuttle between 1986 and 1994, commanding two of the missions. His flights included deployment of the Hubble Space Telescope and the first joint U.S.-Russian shuttle mission, which featured a cosmonaut as a member of his crew. Prior to Bolden’s nomination for the NASA Administrator’s job, he was employed as the Chief Executive Officer of JACKandPANTHER LLC, a small business enterprise providing leadership, military and aerospace consulting, and motivational speaking.

A resident of Houston, Bolden was born Aug. 19, 1946, in Columbia, S.C. He graduated from C. A. Johnson High School in 1964 and received an appointment to the U.S. Naval Academy. Bolden earned a bachelor of science degree in electrical science in 1968 and was commissioned as a second lieutenant in the Marine Corps. After completing flight training in 1970, he became a naval aviator. Bolden flew more than 100 combat missions in North and South Vietnam, Laos, and Cambodia, while stationed in Namphong, Thailand, from 1972-1973.

After returning to the U.S., Bolden served in a variety of positions in the Marine Corps in California and earned a master of science degree in systems management from the University of Southern California in 1977. Following graduation, he was assigned to the Naval Test Pilot School at Patuxent River, Md., and completed his training in 1979. While working at the Naval Air Test Center’s Systems Engineering and Strike Aircraft Test Directorate, he tested a variety of ground attack aircraft until his selection as an astronaut candidate in 1980.

Bolden’s NASA astronaut career included technical assignments as the Astronaut Office Safety Officer; Technical
Assistant to the Director of Flight Crew Operations; Special Assistant to the Director of the Johnson Space Center; Chief of the Safety Division at Johnson (overseeing safety efforts for the return to flight after the 1986 Challenger accident); lead astronaut for vehicle test and checkout at the Kennedy Space Center; and Assistant Deputy Administrator at NASA Headquarters. After his final space shuttle flight in 1994, he left the agency to return to active duty the operating forces in the Marine Corps as the Deputy Commandant of Midshipmen at the U.S. Naval Academy.

Bolden was assigned as the Deputy Commanding General of the 1st Marine Expeditionary Force in the Pacific in 1997. During the first half of 1998, he served as Commanding General of the 1st Marine Expeditionary Force Forward in support of Operation Desert Thunder in Kuwait. Bolden was promoted to his final rank of major general in July 1998 and named Deputy Commander of U.S. Forces in Japan. He later served as the Commanding General of the 3rd Marine Aircraft Wing at Marine Corps Air Station Miramar in San Diego, Calif., from 2000 until 2002, before retiring from the Marine Corps in 2003. Bolden’s many military decorations include the Defense Superior Service Medal and the Distinguished Flying Cross. He was inducted into the U.S. Astronaut Hall of Fame in May 2006.

Bolden is married to the former Alexis (Jackie) Walker of Columbia, S.C. The couple has two children: Anthony Che, a lieutenant colonel in the Marine Corps who is married to the former Penelope McDougal of Sydney, Australia, and Kelly Michelle, a medical doctor now serving a fellowship in plastic surgery.
SPACE APPLICATIONS FUELING BUSINESS INNOVATION

Business executives are looking for a competitive advantage. Find yours at SpaceCom.

NOVEMBER 15–17, 2016
GEORGE R. BROWN CONVENTION CENTER
HOUSTON, TX

WWW.SPACECOMEXPO.COM

ALSO AVAILABLE IN BOOKSTORES

Safety Design for Space Systems
Elsevier 2009
Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. Superb quality information for engineers, programme managers, suppliers and aerospace technologists.

Progress in space safety lies in the acceptance of safety design and engineering as an integral part of the design and implementation process for new space systems. Safety must be seen as the principle design driver of utmost importance from the outset of the design process, which is only achieved through a culture change that moves all stakeholders toward front-end loaded safety concepts. Superb quality information for engineers, programme managers, suppliers and aerospace technologists.

Space Safety Regulations and Standards
Elsevier 2011
Space Safety Regulations and Standards is the definitive book on regulatory initiatives involving space safety, new space safety standards, and safety related to new space technologies under development. More than 30 world experts come together in this book to share their detailed knowledge of regulatory and standard making processes in the area, combining otherwise disparate information into one essential reference and providing case studies to illustrate applications throughout space programs internationally.

Safety Design for Space Operations
Elsevier 2013
Safety Design for Space Operations provides the practical how-to guidance and knowledge base needed to facilitate safe and effective operations safety in line with current regulations. With information on space operations safety design currently disparate and difficult to find in one place, this unique reference brings together essential material on: safety design practices, advanced analysis methods, and implementation procedures.
GLOBAL SPACE EXPLORATION CONFERENCE (GLEX 2017)

6 - 8 June 2017
Beijing, China

The GLEX 2017 programme is designed to bring together leaders and decision-makers within the science and human exploration community – engineers, scientists, entrepreneurs, educators, agency representatives and policy makers. It will provide a forum to discuss recent results, current challenges and innovative solutions and it will contain several opportunities to learn about how space exploration investments provide benefits as well as discuss how those benefits can be increased through thoughtful planning and cooperation.

www.glex2017.org